The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser.

نویسندگان

  • R Keller
  • J Shih
  • C Domingo
چکیده

We discuss the cellular basis and tissue interactions regulating convergence and extension of the vertebrate body axis in early embryogenesis of Xenopus. Convergence and extension occur in the dorsal mesoderm (prospective notochord and somite) and in the posterior nervous system (prospective hindbrain and spinal cord) by sequential cell intercalations. Several layers of cells intercalate to form a thinner, longer array (radial intercalation) and then cells intercalate in the mediolateral orientation to form a longer, narrower array (mediolateral intercalation). Fluorescence microscopy of labeled mesodermal cells in explants shows that protrusive activity is rapid and randomly directed until the midgastrula stage, when it slows and is restricted to the medial and lateral ends of the cells. This bipolar protrusive activity results in elongation, alignment and mediolateral intercalation of the cells. Mediolateral intercalation behavior (MIB) is expressed in an anterior-posterior and lateral-medial progression in the mesoderm. MIB is first expressed laterally in both somitic and notochordal mesoderm. From its lateral origins in each tissue, MIB progresses medially. If convergence does not bring the lateral boundaries of the tissues closer to the medial cells in the notochordal and somitic territories, these cells do not express MIB. Expression of tissue-specific markers follows and parallels the expression of MIB. These facts argue that MIB and some aspects of tissue differentiation are induced by signals emanating from the lateral boundaries of the tissue territories and that convergence must bring medial cells and boundaries closer together for these signals to be effective. Grafts of dorsal marginal zone epithelium to the ventral sides of other embryos, to ventral explants and to UV-ventralized embryos show that it has a role in organising convergence and extension, and dorsal tissue differentiation among deep mesodermal cells. Grafts of involuting marginal zone to animal cap tissue of the early gastrula shows that convergence and extension of the hindbrain-spinal cord are induced by planar signals from the involuting marginal zone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.

Convergent extension, the simultaneous narrowing and lengthening of a tissue, plays a major role in shaping and patterning the neural ectoderm in vertebrate embryos. In this paper, we characterize the cellular mechanism underlying convergent extension of the neural ectoderm in the Xenopus laevis late gastrula and neurula embryo. Neural ectoderm in X. laevis consists of two components, a superfi...

متن کامل

The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus.

We cloned Xenopus Strabismus (Xstbm), a homologue of the Drosophila planar cell or tissue polarity gene. Xstbm encodes four transmembrane domains in its N-terminal half and a PDZ-binding motif in its C-terminal region, a structure similar to Drosophila and mouse homologues. Xstbm is expressed strongly in the deep cells of the anterior neural plate and at lower levels in the posterior notochorda...

متن کامل

Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis

Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...

متن کامل

Integrin α5β1 and Fibronectin Regulate Polarized Cell Protrusions Required for Xenopus Convergence and Extension

Background: Integrin recognition of fibronectin is required for normal gastrulation including the mediolateral cell intercalation behaviors that drive convergent extension and the elongation of the frog dorsal axis; however, the cellular and molecular mechanisms involved are unclear. Results: We report that depletion of fibronectin with antisense morpholinos blocks both convergent extension and...

متن کامل

Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension.

Cell intercalation and cell shape changes drive notochord morphogenesis in the African frog, Xenopus laevis. Experimental observations show that cells elongate mediolaterally and intercalate between one another, causing the notochord to lengthen and narrow. Descriptive observations provide few clues as to the mechanisms that coordinate and drive these cell movements. It is possible that a few r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development (Cambridge, England). Supplement

دوره   شماره 

صفحات  -

تاریخ انتشار 1992